What’s Holding Your Data Program Back?

To deliver on the promise of data-backed technology, such as AI, companies must address underlying restraining forces.

Reading Time: 12 min 

Topics

Buy
Already a member?
Not a member?
Sign up today
Member
Free

5 free articles per month, $6.95/article thereafter, free newsletter.

Subscribe
$75/Year

Unlimited digital content, quarterly magazine, free newsletter, entire archive.

Sign me up

In my career, I’ve spent more than 25 years helping companies with their data and data quality programs. Beginning in 2018, I undertook a broad-based research effort to understand why, so many years into the digital revolution, progress in the data space is so slow. This article synthesizes a review of my clients’ and others’ successes and failures, discussions with dozens of experts in data and analytics, and study groups that dived deeply into various aspects of the topic.

The headline result: Today’s organizations are unfit for data. Until companies address the underlying issues, progress will remain halting and uncertain.

To be clear, the many successes I’ve observed — in data science, analytics, artificial intelligence, data quality, and other ways to put data to work — confirm that the approaches, methods, and technologies around data work just fine. But most companies still struggle. Organizational structures, people issues, a lack of accountability, and other traps get in the way. This conclusion has far-reaching consequences, and leaders should not expect faster progress until they make some real changes. To do so, they must first understand and address the underlying issues that hinder progress.

To better understand both driving forces (those pushing progress forward) and restraining forces (those holding back progress) that are impacting data science progress, I’ve used force field analysis (FFA), a powerful visual tool derived from Kurt Lewin’s change management model. A companion toolkit provides information on how to build out your own FFA. (See “Visualizing Change With Force Field Analysis.”)

Five Areas Key to Success

“Data” is a very broad space, so for this analysis, we will look at five areas of critical importance to companies: data quality, putting data to work, organizational capability, technology, and defense. Failure to deliver in any of these areas can scuttle an otherwise terrific data program:

  • Data quality: Poor-quality data adds incredible cost and friction.
  • Putting data to work: Unless companies put data to work in ways that return value, there is little business benefit. Ways to do so include data science (including AI and machine learning), exploiting proprietary data, creating a data-driven culture, monetizing data by selling it or building it into products and services, and treating data as an asset.
  • Organizational capability: This refers to the people, structure, and culture within the organization that support data programs.

Read the Full Article

Topics

Reprint #:

63133

More Like This

Add a comment

You must to post a comment.

First time here? Sign up for a free account: Comment on articles and get access to many more articles.

Comments (4)
Heather Hill
I like your focus outside of the technology.  In my experience I have reached the same conclusions that the resolution is in people, structure, change management, etc.  Great article!
Saradhi Motamarri
One of the difficult lesson:

“We know the hardware is of little use without software. 
But it is difficult to realise that software is equally useless if there is no database to operate on.”

[Motamarri, 1993. Database Conversion Planning, ACM Software Engineering Notes, 18(1).]
Riona Rooplal
It is great to see the an article that is able to highlight the common mistakes organizations are making and most of them do not even realize this. I am sure this article will open more doors for a better way of collaboration between data and people.
Fong SM
Very insightful and useful to summary what is happening in the enterprise organization.  The organization may need some guides how to kick start to change the culture, people and structure to made the data works